[image: ]
Executive Summary
High-Performance PowerShell with Inline C# is a practical guide for engineers, scripters, and automation architects seeking to unlock the full potential of PowerShell by embedding compiled C# for speed-critical tasks. This booklet introduces the "90/10 Rule"—writing 90% of your script in PowerShell for flexibility, and 10% in C# for raw performance—then walks through real-world use cases that demonstrate how to bridge the two languages effectively.
Readers will learn how to:
· Embed and invoke C# code using Add-Type
· Pass and return complex data structures between PowerShell and C#
· Accelerate loops, file I/O, and database exports using compiled logic
· Access advanced .NET libraries and Windows APIs via P/Invoke
· Troubleshoot common integration errors with confidence
Whether you're optimizing a slow pipeline or building hybrid tools that reach deep into the Windows stack, this guide equips you with the patterns, performance insights, and engineering discipline to write faster, smarter scripts.


High-Performance PowerShell with Inline C#
Introduction: The "100x" Multiplier
· Why mix languages? (Interpreted vs. Compiled).
· When to stay in PowerShell vs. when to switch to C#.
· The "90/10 Rule": Writing 90% of the script in PowerShell for flexibility, and 10% in C# for raw speed.
Chapter 1: The Hello World of Add-Type
· The basic syntax of Add-Type.
· Defining a simple C# class inside a Here-String (@' ... '@).
· Calling static C# methods from PowerShell ([MyClass]::MyMethod()).
· Example: A simple math calculation loop to demonstrate the syntax.
Chapter 2: The Data Bridge (Passing Variables)
· How to pass variables into C# (Strings, Integers, Arrays).
· How to return data back to PowerShell.
· Understanding Type Mapping: [string] $\leftrightarrow$ string, [int] $\leftrightarrow$ int, [PSObject] $\leftrightarrow$ dynamic.
Chapter 3: The Accelerator (Your Use Case)
· The Problem: The Foreach-Object overhead trap.
· The Solution: Moving the "Hot Loop" to C#.
· Case Study: The SQL-to-CSV streaming writer (using the code we just built).
· Detail: Explaining StreamWriter vs. Out-File.
Chapter 4: Unlocking the .NET Framework
· Accessing libraries that PowerShell struggles with (e.g., complex Math, Cryptography, or high-speed File I/O).
· Handling Assemblies (The "System.Data" error you encountered—this is a crucial section!).
· Example: Using C# List<T> or Dictionary<T,T> for high-speed lookups that beat PowerShell HashTables.
Chapter 5: Reaching Deep into Windows (P/Invoke)
· Calling Windows API functions (Win32) directly.
· Example: interacting with window handles, manipulating the cursor, or low-level system calls that PowerShell cmdlets don't cover.
Appendix: The Troubleshooting Cheat Sheet
· "Type not found" errors.
· "Assembly reference" errors.
· Debugging compiled C# code (tips on using Write-Host inside C# or returning error strings).


Table of Contents
Chapter 1: The Hello World of Add-Type	7
The Core Pattern	7
Step-by-Step Implementation	7
1. The Source Code (Here-String)	7
2. The Compilation	7
3. The Invocation	7
Complete Example:	9
Chapter 2: The Data Bridge	11
1. Passing Arrays INTO C#	11
2. Returning Arrays BACK to PowerShell	11
Chapter 3: The Accelerator (Streaming Data)	14
The Problem: The "Object Tax"	14
The Solution: The C# "Hot Loop"	14
Chapter 4: Unlocking the .NET Framework	18
1. The Power of Generic Collections	18
2. Handling "Missing" Assemblies	19
3. Complex Math & Logic	20
Chapter 5: Reaching Deep into Windows (P/Invoke)	21
The Pattern	21
Example 1: Creating a "Message Box" (User32.dll)	21
Example 2: Preventing Sleep (Kernel32.dll)	22
Appendix: The Troubleshooting Cheat Sheet	23
1. Error: "The Type [MyClass] Cannot Be Found"	23
2. Error: "The Type Name 'MyClass' Already Exists"	23
3. Error: "The type or namespace name 'X' does not exist"	24
4. Error: "Method invocation failed... doesn't contain a method named 'X'"	24
5. How to "Print" from inside C#	24

[bookmark: _Toc217541407]Chapter 1: The Hello World of Add-Type
PowerShell is an interpreted language, which offers flexibility but incurs overhead for every command. C# is a compiled language, offering raw speed but requiring a build step.
The Add-Type cmdlet bridges this gap. It allows you to embed C# source code directly into your PowerShell script, compile it into memory at runtime, and execute it with native performance.
[bookmark: _Toc217541408]The Core Pattern
There are three distinct steps to using inline C#:
1. Define: Store your C# code in a PowerShell variable (using a Here-String).
2. Compile: Pass that variable to Add-Type.
3. Invoke: Call the compiled static methods using standard PowerShell bracket syntax.
[bookmark: _Toc217541409]Step-by-Step Implementation
[bookmark: _Toc217541410]1. The Source Code (Here-String)
We use a Here-String (@' ... '@) to define the C# code. This prevents PowerShell from trying to interpret special characters (like $, ", or {) inside the C# block.
PowerShell
$csharpSource = @'
using System;

public class BasicMath
{
    // "public static" is key. It lets us call the method 
    // without creating an instance of the class object.
    public static int Add(int a, int b)
    {
        return a + b;
    }

    public static string SayHello(string name)
    {
        return "Hello, " + name + " from compiled C#!";
    }
}
'@

[bookmark: _Toc217541411]2. The Compilation
We pass the source code to the Add-Type cmdlet.
PowerShell
Add-Type -TypeDefinition $csharpSource -Language CSharp

Note: When this line runs, PowerShell invokes the C# compiler (Roslyn). You may see a slight pause (milliseconds) the first time it runs. Once compiled, the class BasicMath exists in memory for the duration of your session.
[bookmark: _Toc217541412]3. The Invocation
Now that BasicMath is a known type in your session, you call its methods using :: (the static member operator).
PowerShell
# Call the Math method
$result = [BasicMath]::Add(10, 50)
Write-Host "Result: $result"  # Output: Result: 60

# Call the String method
$message = [BasicMath]::SayHello("Randy")
Write-Host $message           # Output: Hello, Randy from compiled C#!
Critical Rules for Chapter 1
· Public Static: For simple inline accelerators, always mark your C# methods as public static. This avoids the need to use New-Object to instantiate the class before using it.
· One-Time Compilation: You cannot Add-Type the same class name twice in the same PowerShell session. If you change your C# code, you must restart your PowerShell console to reload the new version.
· Type Safety: C# is strictly typed. If your C# method expects an int and you pass a string that cannot be parsed as a number, PowerShell will throw an error before the C# code even executes.
[bookmark: _Toc217541413]
Complete Example:
# 1. Define the C# Source Code
#    We use a "Here-String" (@' ... '@) to keep the C# code clean and separate.
$csharpSource = @'
using System;

public class MathAccelerator
{
    // A simple method to add two integers
    public static int Add(int number1, int number2)
    {
        return number1 + number2;
    }

    // A method that returns a string message
    public static string GetGreeting(string name)
    {
        return "Hello " + name + ", this message came from compiled C#!";
    }

    // A method to calculate the area of a circle (demonstrating doubles)
    public static double CalculateCircleArea(double radius)
    {
        return Math.PI * Math.Pow(radius, 2);
    }
}
'@

# 2. Compile the Code
#    "try...catch" is a best practice here. It prevents the "Type already exists" 
#    error if you run this script multiple times in the same session.
try {
    Add-Type -TypeDefinition $csharpSource -Language CSharp
}
catch {
    # If the type is already added, we just ignore the error and continue.
    # In a production script, you might check specifically for the "type exists" error.
    Write-Verbose "Type 'MathAccelerator' is already loaded."
}

# 3. Invoke the Methods
#    Now we use the class just like any other .NET type (like [Math] or [String]).

Clear-Host
Write-Host "--- C# Accelerator Demo ---" -ForegroundColor Cyan

# Test 1: Addition
$sum = [MathAccelerator]::Add(150, 250)
Write-Host "150 + 250 = $sum"

# Test 2: Strings
$msg = [MathAccelerator]::GetGreeting("Reader")
Write-Host $msg

# Test 3: Math Calculation
$area = [MathAccelerator]::CalculateCircleArea(5.0)
# We can format the result just like any other number in PowerShell
Write-Host "Area of circle (radius 5): $($area.ToString("N2"))"

Write-Host "---------------------------" -ForegroundColor Cyan


[bookmark: _Toc217541414]Chapter 2: The Data Bridge
Passing single numbers or strings (as seen in Chapter 1) is simple. However, real-world automation requires moving large collections of data—arrays, lists, and tables—between PowerShell and your C# block.
This chapter explains how to pass data into C# and how to get complex results back without breaking the data structure.
[bookmark: _Toc217541415]1. Passing Arrays INTO C#
When you pass a PowerShell array (e.g., $myArray) into a C# method, it must match the C# type definition.
· PowerShell: [string[]]$names $\rightarrow$ C#: string[] names
· PowerShell: [int[]]$numbers $\rightarrow$ C#: int[] numbers
Critical Note: C# arrays are fixed-size. If you need to add or remove items dynamically inside C#, use a List<T> instead of an array [].
[bookmark: _Toc217541416]2. Returning Arrays BACK to PowerShell
When C# returns an array or List, PowerShell automatically "unrolls" it into a standard PowerShell object stream. This is convenient because you can immediately pipe the result to other cmdlets like Where-Object or Export-Csv.
Example Script: ArrayProcessor.ps1
This script demonstrates sending a list of prices to C#, applying a complex tax calculation (which would be slow in a PowerShell loop), and returning the results.
PowerShell
$csharpSource = @'
using System;
using System.Collections.Generic; // Required for List<T>

public class DataBridge
{
    // 1. Input: We accept a standard array of doubles (double[])
    // 2. Output: We return a double[] array back to PowerShell
    public static double[] CalculateTax(double[] prices, double taxRate)
    {
        // Use a List for dynamic storage inside C#
        List<double> results = new List<double>();

        for (int i = 0; i < prices.Length; i++)
        {
            double price = prices[i];
            
            // Apply tax logic
            double total = price + (price * taxRate);
            
            // Round to 2 decimals (currency style)
            total = Math.Round(total, 2);

            results.Add(total);
        }

        // Convert the List back to an Array to return it
        return results.ToArray();
    }
}
'@

try {
    Add-Type -TypeDefinition $csharpSource -Language CSharp
} catch {
    # Ignore if type already exists
}

# --- TEST THE BRIDGE ---

# 1. Create a large array in PowerShell (10,000 items)
$priceList = 1..10000 | ForEach-Object { Get-Random -Minimum 10 -Maximum 100 }
Write-Host "Created list of $($priceList.Count) prices."

# 2. Pass the ENTIRE array to C# in one go
#    (We do NOT loop in PowerShell; we hand off the whole collection)
$start = Get-Date
$finalPrices = [DataBridge]::CalculateTax($priceList, 0.08) # 8% Tax
$end = Get-Date

# 3. Verify results
Write-Host "Processed $($finalPrices.Count) items in $(($end - $start).TotalMilliseconds) ms."
Write-Host "First Item: $($finalPrices[0])"
Write-Host "Last Item:  $($finalPrices[-1])"
Key Takeaways for Chapter 2
1. Don't Loop in PowerShell: The most common mistake is writing foreach ($item in $list) { [Class]::Method($item) }. This is slow.
2. Hand Off Everything: Instead, pass the entire array to C# once: [Class]::Method($list). Let C# handle the looping.
3. Type Matching: If your PowerShell array contains $null values, a C# int[] will crash. Ensure your data is clean, or use nullable types (e.g., int?[]) in C#.



[bookmark: _Toc217541417]Chapter 3: The Accelerator (Streaming Data)
This chapter addresses the most common performance bottleneck in PowerShell: The Pipeline Trap.
[bookmark: _Toc217541418]The Problem: The "Object Tax"
PowerShell is built on objects. When you run a standard command like Export-Csv, PowerShell does the following for every single row:
1. Takes the raw data.
2. Wraps it in a heavy PSObject.
3. Adds metadata (NoteProperties).
4. Passes it through the pipeline.
5. Unwraps it to write to the file.
For 1,000 rows, this is negligible. For 1,000,000 rows, this overhead makes scripts take hours instead of seconds.
[bookmark: _Toc217541419]The Solution: The C# "Hot Loop"
To fix this, we move the "Hot Loop"—the part of the code that iterates millions of times—into C#. By doing this, we bypass the PowerShell object system entirely. We read raw data types (int, string, date) and write directly to the disk stream.
The Code Pattern: IDataReader to StreamWriter
The most powerful version of this technique is streaming data directly from a Database (SQL Server) to a file (CSV). This approach uses virtually zero memory because it never loads the whole table at once; it handles one row at a time in the CPU cache.
Here is the "Golden Template" for high-performance SQL exporting.
Example Script: SqlToCsv_Accelerator.ps1
PowerShell
$csharpSource = @'
using System;
using System.Data;
using System.IO;
using System.Text;

public class CsvAccelerator
{
    // This method takes an open DataReader and streams it to disk.
    // It returns a count of rows written.
    public static long ExportToCsv(IDataReader reader, string filePath)
    {
        long rowCount = 0;
        
        // 1. Setup the Writer (1MB buffer for speed)
        using (StreamWriter sw = new StreamWriter(filePath, false, Encoding.UTF8, 1048576))
        {
            int fieldCount = reader.FieldCount;

            // 2. Write Headers
            //    (Looping through schema, not data)
            for (int i = 0; i < fieldCount; i++)
            {
                if (i > 0) sw.Write(",");
                sw.Write("\"" + reader.GetName(i) + "\"");
            }
            sw.WriteLine();

            // 3. The "Hot Loop" - This runs millions of times
            while (reader.Read())
            {
                for (int i = 0; i < fieldCount; i++)
                {
                    if (i > 0) sw.Write(",");

                    // Get value efficiently
                    object val = reader.GetValue(i);

                    // Handle NULLs and escaping
                    if (val == null || val == DBNull.Value)
                    {
                        sw.Write("\"\""); 
                    }
                    else
                    {
                        // Escape quotes by doubling them (" becomes "")
                        string cleanVal = val.ToString().Replace("\"", "\"\"");
                        sw.Write("\"" + cleanVal + "\"");
                    }
                }
                sw.WriteLine();
                rowCount++;
            }
        }
        return rowCount;
    }
}
'@

# --- COMPILATION ---
# Note: We must reference System.Data to use IDataReader
Add-Type -TypeDefinition $csharpSource -Language CSharp -ReferencedAssemblies "System.Data"

# --- USAGE EXAMPLE (Mock SQL) ---
# In a real script, this would be your actual SQL connection logic.

$connectionString = "Server=myServer;Database=myDB;Integrated Security=True"
$query = "SELECT * FROM LargeTable"

# We use standard .NET SQL classes to get the Reader
$conn = New-Object System.Data.SqlClient.SqlConnection($connectionString)
$cmd  = $conn.CreateCommand()
$cmd.CommandText = $query

try {
    $conn.Open()
    
    # 'SequentialAccess' is critical! It tells SQL Server not to buffer rows.
    $reader = $cmd.ExecuteReader([System.Data.CommandBehavior]::SequentialAccess)

    Write-Host "Starting Export..." -ForegroundColor Green
    $sw = [System.Diagnostics.Stopwatch]::StartNew()

    # THE MAGIC MOMENT: Hand off the reader to C#
    $rows = [CsvAccelerator]::ExportToCsv($reader, "C:\Temp\FastExport.csv")

    $sw.Stop()
    Write-Host "Done! Exported $rows rows in $($sw.Elapsed.TotalSeconds) seconds."
}
catch {
    Write-Error $_
}
finally {
    if ($conn) { $conn.Close() }
}

Why This Is Fast
1. Direct Stream: The data goes SQL -> RAM (Buffer) -> Disk. It effectively never "stops" in PowerShell variables.
2. No Type Inspection: PowerShell checks variable types constantly. C# knows it is an int, so it just adds it.
3. Buffer Management: The 1048576 (1MB) buffer size in StreamWriter means we only hit the physical hard drive once every ~10,000 rows, rather than every single row.


[bookmark: _Toc217541420]Chapter 4: Unlocking the .NET Framework
PowerShell is built on top of .NET, which means it has access to the same massive library of pre-built code that C# developers use. While you can access many .NET classes directly in PowerShell (e.g., [System.Math]::Sqrt(16)), some features are clumsy or impossible to use without C#.
This chapter focuses on using Add-Type to access advanced .NET features like high-performance collections (Lists/Dictionaries) and complex system libraries.
[bookmark: _Toc217541421]1. The Power of Generic Collections
PowerShell arrays (@()) are fixed in size. Adding an item to an array actually destroys the old array and creates a new, larger one. This is terrible for performance.
C# offers List<T> and Dictionary<T,Key>, which are designed for speed. While you can create these in PowerShell, handling them inside a C# block is often cleaner and faster for heavy operations.
Example: High-Speed Lookups with Dictionary
Imagine you have 100,000 product codes and you need to check if a specific code exists.
· PowerShell (Where-Object): Slow (scans the whole list).
· C# (Dictionary): Instant (hashing lookup).
PowerShell
$csharpSource = @'
using System;
using System.Collections.Generic;

public class InventoryManager
{
    // A high-speed dictionary to store product codes
    // Key = ProductCode (string), Value = Price (double)
    private static Dictionary<string, double> _products = new Dictionary<string, double>();

    public static void LoadData(string[] codes, double[] prices)
    {
        _products.Clear();
        for (int i = 0; i < codes.Length; i++)
        {
            if (!_products.ContainsKey(codes[i]))
            {
                _products.Add(codes[i], prices[i]);
            }
        }
    }

    public static double GetPrice(string code)
    {
        if (_products.ContainsKey(code))
        {
            return _products[code];
        }
        return -1.0; // Not found
    }
}
'@

Add-Type -TypeDefinition $csharpSource -Language CSharp

# --- Usage ---
$codes = @("A100", "B200", "C300")
$prices = @(10.50, 20.75, 5.99)

# Load data into the fast C# memory structure
[InventoryManager]::LoadData($codes, $prices)

# Instant lookup
$price = [InventoryManager]::GetPrice("B200")
Write-Host "The price of B200 is $$($price)"

[bookmark: _Toc217541422]2. Handling "Missing" Assemblies
By default, Add-Type only knows about the core .NET libraries (System, System.IO, etc.). If you want to use something specific—like System.Data (for SQL) or System.Windows.Forms (for GUIs)—you must tell the compiler where to find it.
The "ReferencedAssemblies" Parameter
When using Add-Type, use the -ReferencedAssemblies parameter to unlock these libraries.
Common Assemblies You Might Need:
· System.Data (SQL Server, OleDb, ODBC)
· System.Drawing (Image processing)
· System.Windows.Forms (GUI windows, Message Boxes)
· System.Web (HTML encoding/decoding)
The "Bulletproof" Loading Technique: Newer versions of PowerShell (Core 6/7) can be picky about assembly names. The safest way to load an assembly for your C# block is to load it in PowerShell first, then pass its location to the compiler.
PowerShell
# 1. Load the assembly into PowerShell
Add-Type -AssemblyName System.Windows.Forms

# 2. Get the physical path
$ref = [System.Windows.Forms.MessageBox].Assembly.Location

# 3. Compile your C# code using that path
$source = @"
using System.Windows.Forms;
public class GuiTools {
    public static void ShowMessage() {
        MessageBox.Show("Hello from C#!");
    }
}
"@
Add-Type -TypeDefinition $source -Language CSharp -ReferencedAssemblies $ref

[bookmark: _Toc217541423]3. Complex Math & Logic
Some algorithms are just easier to write in C# syntax. For example, complex nested loops, recursive functions, or bitwise operations are often more readable and performant in C# than in PowerShell script.


[bookmark: _Toc217541424]Chapter 5: Reaching Deep into Windows (P/Invoke)
Sometimes, the standard .NET Framework doesn't go deep enough. You might need to interact directly with the Windows operating system—managing window handles, controlling the mouse cursor, or checking system uptime at the hardware level.
This is done using Platform Invocation Services (P/Invoke). While you can do this in pure PowerShell, it involves complex, ugly signature definitions. Doing it in C# is cleaner, safer, and follows the standard documentation you'll find online.
What is P/Invoke?
P/Invoke allows managed code (C#/.NET) to call unmanaged functions in dynamic link libraries (DLLs), most commonly the Windows API (User32.dll, Kernel32.dll).
[bookmark: _Toc217541425]The Pattern
1. Find the Signature: Look up the C# signature for the Windows function you need (a great resource is pinvoke.net).
2. Wrap it in C#: Create a class with the [DllImport] attribute.
3. Call it from PowerShell: Use the static method as usual.
[bookmark: _Toc217541426]Example 1: Creating a "Message Box" (User32.dll)
While .NET has message boxes, the raw Windows API version is the "Hello World" of P/Invoke.
PowerShell
$csharpSource = @'
using System;
using System.Runtime.InteropServices; // Required for DllImport

public class WinApi
{
    // The [DllImport] attribute tells the compiler to look in User32.dll
    [DllImport("user32.dll", CharSet = CharSet.Auto)]
    public static extern int MessageBox(IntPtr hWnd, String text, String caption, uint type);
}
'@

Add-Type -TypeDefinition $csharpSource -Language CSharp

# 0x40 = Information Icon, 0x01 = OK/Cancel Buttons
[WinApi]::MessageBox(0, "This is a raw Windows API call!", "P/Invoke Demo", 0x41)

[bookmark: _Toc217541427]Example 2: Preventing Sleep (Kernel32.dll)
A practical engineering use case: You are running a long migration script (like your SQL export), and you need to ensure the computer does not go to sleep, even if the user is away.
Windows has a function called SetThreadExecutionState for this.
PowerShell
$csharpSource = @'
using System;
using System.Runtime.InteropServices;

public class SystemPower
{
    [DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]
    public static extern uint SetThreadExecutionState(uint esFlags);

    // Constants for the flags
    public const uint ES_CONTINUOUS = 0x80000000;
    public const uint ES_SYSTEM_REQUIRED = 0x00000001;
    public const uint ES_DISPLAY_REQUIRED = 0x00000002;

    public static void PreventSleep()
    {
        // Set state to System Required + Display Required (keeps screen on)
        SetThreadExecutionState(ES_CONTINUOUS | ES_SYSTEM_REQUIRED | ES_DISPLAY_REQUIRED);
    }

    public static void AllowSleep()
    {
        // Reset to continuous (normal) mode
        SetThreadExecutionState(ES_CONTINUOUS);
    }
}
'@

Add-Type -TypeDefinition $csharpSource -Language CSharp

# Start of script
Write-Host "Preventing system sleep..."
[SystemPower]::PreventSleep()

# ... Your long running process goes here ...
Start-Sleep -Seconds 5 

# End of script
Write-Host "Restoring normal power settings..."
[SystemPower]::AllowSleep()

Key Takeaways for Chapter 5
1. extern Keyword: You never write the body of the method. You declare it extern (external) because the code already exists inside Windows; you are just creating a doorway to it.
2. IntPtr: You will often see IntPtr (Integer Pointer) in Windows API examples. This represents a memory address or a "Handle" (like a window ID). In PowerShell/C#, you treat this as a special type of number.
3. Safety First: P/Invoke calls unmanaged code. If you pass the wrong arguments (like a bad pointer), you can crash the entire PowerShell process, not just catch an error. Always double-check your signatures.


[bookmark: _Toc217541428]Appendix: The Troubleshooting Cheat Sheet
Mixing C# and PowerShell is powerful, but it introduces a new set of error messages. This guide covers the most common headaches and how to cure them.
[bookmark: _Toc217541429]1. Error: "The Type [MyClass] Cannot Be Found"
Symptom: You run your script, and PowerShell complains that it can't find the class you just wrote.
Plaintext
Unable to find type [MyClass].
Cause:
1. The Add-Type command failed (look for earlier red text).
2. You defined the class inside a C# namespace but tried to call it without one.
The Fix:
· Check the namespace: If your C# code says namespace MyTools { public class Math ... }, you must call it in PowerShell using [MyTools.Math]::Method().
· Keep it simple: For simple scripts, remove the namespace lines from your C# block entirely.
[bookmark: _Toc217541430]2. Error: "The Type Name 'MyClass' Already Exists"
Symptom: You run your script twice. The first time works; the second time fails.
Plaintext
Add-Type : Cannot add type. The type name 'MyClass' already exists.
Cause: Once a C# class is compiled into a PowerShell session, it is immutable. You cannot change it or overwrite it until you close the window.
The Fix: Wrap your Add-Type command in a try...catch block (as seen in Chapter 1).
PowerShell
try {
    Add-Type -TypeDefinition $code -Language CSharp
} catch {
    # It's already loaded, so we are good to go!
}
Warning: If you are editing your C# code, you must restart your PowerShell console to see the changes. The try...catch block only hides the error; it does not update the code.
[bookmark: _Toc217541431]3. Error: "The type or namespace name 'X' does not exist"
Symptom: This is the error you encountered with System.Data.
Plaintext
The type or namespace name 'Data' does not exist in the namespace 'System'
Cause: The C# compiler (Roslyn) does not automatically know about every DLL on your computer.
The Fix: Use the -ReferencedAssemblies parameter.
· Quick Fix: -ReferencedAssemblies "System.Data" (Works on older PowerShell).
· Robust Fix: Load the assembly in PowerShell first (Add-Type -AssemblyName ...), then pass .Assembly.Location to the compiler.
[bookmark: _Toc217541432]4. Error: "Method invocation failed... doesn't contain a method named 'X'"
Symptom:
Plaintext
Method invocation failed because [MyClass] does not contain a method named 'DoWork'.
Cause: You likely forgot the keyword static in your C# method.
· Static: public static void DoWork() -> Call with [MyClass]::DoWork()
· Instance: public void DoWork() -> Requires New-Object first.
The Fix: Add static to your C# method definition unless you specifically need object-oriented instances.
[bookmark: _Toc217541433]5. How to "Print" from inside C#
When your C# code is running, you can't easily see what variables are doing.
· Don't use: Console.WriteLine() (In the PowerShell ISE, this often prints nothing).
· Do use: System.Console.WriteLine() (This works in the standard console).
· Better: Return the string to PowerShell and let PowerShell write it.


2

image1.png
$code = @'
public Static My(lass
{

static Metha; Sum(int, int y)
return sum x;

)

$result =- Add-Type.Add-frce(1)
$result.Sum (10, 20);

using System;
public static
1
public static

public static Sum(int x)
int x, int y)




image2.gif




